Home » » M3 Sec To Ft3 Sec

M3 Sec To Ft3 Sec


M3 Sec To Ft3 Sec

sec² 6° + sec² 42° + sec² 66° + sec² 78° = ...

1. sec² 6° + sec² 42° + sec² 66° + sec² 78° = ...


Trigonometri Analitik.

Rumus-rumus yang digunakan:
a² + b² = (a - b)² + 2ab = (a + b)² - 2ab

cos A - cos B = -2 sin [(A + B) / 2] sin [(A - B) / 2]
cos α cos β = 1/2 [cos (α + β) + cos (α - β)]

2. Tentukan nilai dari: sec² 9° + sec² 27° + sec² 63° + sec² 81°


Sudut relasi :
sin (90° - x) = cos x
sec (90° - x) = cosec x
tan (90° - x) = cot x

sec² 9° + sec² 27° + sec² 63° + sec² 81°
= sec² 9° + sec² 27° + sec² (90° - 27°) + sec² (90° - 9°)
= sec² 9° + sec² 27° + cosec² 27° + cosec² 9°
= sec² 9° + cosec² 9° + sec² 27° + cosec² 27°

= 1/(cos² 9°) + 1/(sin² 9°) + 1/(cos² 27°) + 1/(sin² 27°)

= (sin² 9° + cos² 9°)/(cos² 9° sin² 9°) + (sin²27° + cos²27°)/(cos²27° sin²27°)

= 1/(sin 9° cos 9°)² + 1/(sin 27° cos 27°)²

= 1/(1/2 sin 18°)² + 1/(1/2 sin 54°)²

= 1/(1/4 sin² 18°) + 1/(1/4 sin² 54°)

= 4/(sin² 18°) + 4/(sin² 54°)

= 4(sin² 54° + sin² 18°) / (sin² 54° sin² 18°)

Dilanjutkan di bawah !

cos 54° = sin 36°
cos (36° + 18°) = sin 36°
cos 36° cos 18° - sin 36° sin 18° = sin 36°
(1 - 2 sin² 18°) cos 18° - (2 sin 18° cos 18°) sin 18° = 2 sin 18° cos 18°
cos 18° - 2 sin² 18° cos 18° - 2 sin² 18° cos 18° = 2 sin 18° cos 18°
1 - 2 sin² 18° - 2 sin² 18° = 2 sin 18°
1 - 4 sin² 18° = 2 sin 18°
0 = 4 sin² 18° + 2 sin 18° - 1
Dengan rumus ABC
sin 18° = (-b ± √(b² - 4ac)) /2a
= (-2 ± √(2² - 4(4(-1)) / 2(4)
= (-2 ± √(4 + 16)) / 8
= (-2 ± √20) / 8
= (-2 ± 2√5) / 8
= (-1 ± √5) / 4
Karena 18° dikuadran 1 maka
sin 18° = (-1 + √5)/4

sin² 18° = [(-1 + √5)/4]²
= (1 - 2√5 + 5) / 16
= (6 - 2√5) / 16
= (3 - √5) / 8

cos 36° = 1 - 2 sin² 18°
= 1 - 2 (3 - √5}/8
= 1 - (3 - √5)/4
= (4 - (3 - √5))/4
= (1 + √5)/4

sin² 54° = cos² 36°
= ((1 + √5)/4)²
= (1 + 2√5 + 5)/16
= (6 + 2√5)/16
= (3 + √5)/8

sin² 54° + sin² 18° = (3 + √5)/8 + (3 - √5)/8 = 6/8 = 3/4

sin² 54° sin² 18° = (3 + √5)/8 . (3 - √5)/8 = (9 - 5)/64 = 4/64 = 1/16

LANJUTAN JAWABAN
= 4(sin² 54° + sin² 18°) / (sin² 54° sin² 18°)

= 4(3/4) / (1/16)

= 3 (16/1)

= 48

3. sec 0° + sec 30° + sec 60°=​


Jawaban:

Itu gampang.

Penjelasan:

SEC 0° + SEC 30° + SEC 60° =

kita buang saja SEC nya

jadi, 0° + 30° + 60° = 90°

nah setelah tau bahwa hasilnya 90°

SEC nya masukin lagi.. jadi SEC 90°

Nah, jawaban dari pertanyaan SEC 0° + SEC 30° + SEC 60° adalah SEC 90°

Semoga dapat membantu.


4. Hitunglah: sec² 10° + sec² 50° + sec² 70° = ...


Materi Trigonometri analitik <<<<<

5. (tg× + sec×) (tg× -sec×)=-1


Penjelasan dengan langkah-langkah:

[tex]( \tan(x) + \sec(x) )( \tan(x) - \sec(x)) = -1 \\ \tan ^{2} (x) - \sec ^{2} (x) = -1 \\ \frac{ \sin ^{2} (x) }{ \cos ^{2} (x) } - \frac{1}{ \cos ^{2} (x) } = -1 \\ \frac{ \sin ^{2} (x) - 1}{ \cos ^{2} (x) } = -1 \\ \frac{ -\cos ^{2} (x) }{ \cos ^{2} (x) } = -1 \\ -1 = -1[/tex]

terbukti


6. sec² (π/7) + sec² (2π/7) + sec² (3π/7) = ...


Trigonometri Analitik.

Penyelesaian menggunakan polinomial Chebysev atau membawanya ke akar-akar polinomial berderajat tiga (persamaan kubik). Kita gunakan cara yang ke-2 tetapi cara ini harus bisa menggunakan rumus-rumus trigonometri yang dapat membawa ke persamaan kubik.

tan² (π/7) + tan² (2π/7) + tan² (3π/7)
tan 4x = -tan 3x dengan x = π/7, 2π/7, 3π/7
(4 tan x - 4 tan² x) / (1 - 6 tan² x + tan⁴ x) = -(3 tan x - tan³ x) / (1 - 3 tan² x)
4 tan x (1 - tan² x) / (1 - 6 tan² x + tan⁴ x) = tan x (3 - tan² x) / (1 - 3 tan² x)
4(1 - tan² x)(1 - 3 tan² x) = (1 - 6 tan² x + tan⁴ x)(-3 tan x + tan² x)
4 - 16 tan² x + 12 tan⁴ x = -3 + 19 tan² x - 9 tan⁴ x + tan⁶ x
tan⁶ x - 21 tan⁴ x + 35 tan² x - 7 = 0
(tan² x)³ - 21 (tan² x)² + 35 tan² x - 7 = 0
u³ - 21u² + 35u² - 7 = 0 ← Bentuk au³ + bu² + cu + d = 0

Sudah dalam bentuk persamaan kubik. Kita akan gunakan teorema akar-akar Vieta untuk menyelesaikan ini.
u₁ + u₂ + u₃ = -b/a
u₁u₂ + u₁u₃ + u₂u₃ = c/a
u₁u₂u₃ = -d/a

Perhatikan!
tan² (π/7) + tan² (2π/7) + tan² (3π/7)
= u₁ + u₂ + u₃
= -(-21) / 1 = 21

sec x = csc (π/2 - x)
csc² x = 1 + cot² x
cot x = tan (π/2 - x)
Jadi:
sec² (π/7) + sec² (2π/7) + sec² (3π/7)
= csc² (5π/14) + csc² (3π/14) + csc² (π/14)
= 3 + cot² (5π/14) + cot² (3π/14) + cot² (π/14)
= 3 + tan² (π/7) + tan² (2π/7) + tan² (3π/7)
= 24

7. Evaluate: sec² 20° + sec² 40° + sec² 80° = ...


Semoga jawaban ini benar.

8. hitunglah sec 0 + sec 45 =


sec 45...
mungkin..
smoga ajh mmbAnty..sec 0 = 1/cos 0 = 1
sec 45 = 1/cos 45 = 1/(√2 / 2)
= 2/√2
= √2

hasilnya: 1 + √2

9. pembuktian sec²-sec²sin²=1


sec² - sec² sin²
= (1/cos²) - (1/cos²)sin²
= (1 - sin²)/cos²
= cos²/cos²
= 1 ← terbukti 

10. Jawab dengan menggunakan perhitungan! sec 12° sec 24° sec 36° sec 48° sec 60° sec 72° sec 84° = ... A. 2⁵ B. 2⁻³ C. 2² D. 2⁷ E. 2⁻⁴


jawaban terlampir

mohon koreksi..
senang bisa membantu :)

11. sec α tan² α + sec a = a. sec α b. sec² α c. sec³ α d. cosec α e. cosec² α


sec a tan² a + sec a = ?
[tex] \frac{1}{cos a} \frac{ sin^{2}a }{ cos^{2}a } + \frac{1}{cos} \\ = \frac{1}{cos a} \frac{ sin^{2}a }{ cos^{2}a } + \frac{1}{cos} \frac{ cos^{2}a }{ cos^{2}a } \\ = \frac{ sin^{2}a + cos^{2}a }{ cos^{3}a } \\ = \frac{1}{ cos^{3}a } \\ = sec^{3}a [/tex]

Jawabannya C. sec³ a

ingat:

sin² a + cos² a = 1
sec = 1/cos a
cosec = 1/sin a

12. cosec 30 + cosec 60 + 90sec 0 + sec 30 + sec 60


Kelas 10 Matematika
Bab Trigonometri

cosec 30° + cosec 60 + 90 . sec 0° + sec 30° + sec 60°
= 1/sin 30° + 1/sin 60° + 90 . 1/cos 0° + 1/cos 30° + 1/cos 60°
= 2 + 2/3 √3 + 90 . 1 + 2/3 √3 + 2
= 94 + 4/3 √3


13. 2 - sec^2θ / sec^2θ =


Jawaban:

=2-20÷20

=2-1

=1

Penjelasan dengan langkah-langkah:

semoga bermanfaat


14. pembuktian sec²-sec²sin²=1


sec²-sec²sin²=1
sec² (1-sin²) = 1
sec² (cos²) = 1
1= 1

ingat !!!
sin² + cos² =1
cos²  = 1-sin²

sec² = [tex] \frac{1}{ cos^{2} } [/tex]
sec^2-sec^2sin^2 = 1

keluarkan sec^2 pada ruas kiri
shg menjadi

sec^2 (1 - sin^2) = 1

ingat cos^2 + sin^2 = 1
         cos^2 = 1-sin^2
sehingga menjadi

sec^2. cos^2 = 1

ingat sec^2 = 1/cos^2
sehingga menjadi

(1/cos^2) . cos^2 = 1
cos^2/cos^2 = 1
1 = 1

terbukti

bisa juga sec^2 nya yg kita rubah
sehingga

sec^2 - sec^2.sin^2 = 1
ingat sec^2 = 1/cos^2

1/cos^2 - (1/cos^2).sin^2 = 1
1/cos^2 - sin^2/cos^2 = 1
(1-sin^2) / cos^2 = 1
cos^2 / cos^2 = 1
1=1

terbukti


15. sec 0 ° + sec 45 ° =


sec 0°=0
sec 45=2/akar2

sec 0°+sec 45°=2/akar 2

16. sec 60° – sec 45° + sec 30°​


Penjelasan dengan langkah-langkah:

Penjelasan dengan langkah-langkah:cosec 30° = 1/(sin 30°) = 1/ (1/2) = 2

Penjelasan dengan langkah-langkah:cosec 30° = 1/(sin 30°) = 1/ (1/2) = 2tan 45° = 1

Penjelasan dengan langkah-langkah:cosec 30° = 1/(sin 30°) = 1/ (1/2) = 2tan 45° = 1cot 60° = 1/ (tan 60°) = 1/ (akar3)

Penjelasan dengan langkah-langkah:cosec 30° = 1/(sin 30°) = 1/ (1/2) = 2tan 45° = 1cot 60° = 1/ (tan 60°) = 1/ (akar3)sec 30° = 1/ (cos 30°) = 1/ (akar3/2) =2/akar 3

Penjelasan dengan langkah-langkah:cosec 30° = 1/(sin 30°) = 1/ (1/2) = 2tan 45° = 1cot 60° = 1/ (tan 60°) = 1/ (akar3)sec 30° = 1/ (cos 30°) = 1/ (akar3/2) =2/akar 3cosec 30° × tan 45° - cot 60° × sec 30°

Penjelasan dengan langkah-langkah:cosec 30° = 1/(sin 30°) = 1/ (1/2) = 2tan 45° = 1cot 60° = 1/ (tan 60°) = 1/ (akar3)sec 30° = 1/ (cos 30°) = 1/ (akar3/2) =2/akar 3cosec 30° × tan 45° - cot 60° × sec 30°= 2 × 1 - 1/ (akar3) × 2/ (akar3)

Penjelasan dengan langkah-langkah:cosec 30° = 1/(sin 30°) = 1/ (1/2) = 2tan 45° = 1cot 60° = 1/ (tan 60°) = 1/ (akar3)sec 30° = 1/ (cos 30°) = 1/ (akar3/2) =2/akar 3cosec 30° × tan 45° - cot 60° × sec 30°= 2 × 1 - 1/ (akar3) × 2/ (akar3)= 2 - 2/3

Penjelasan dengan langkah-langkah:cosec 30° = 1/(sin 30°) = 1/ (1/2) = 2tan 45° = 1cot 60° = 1/ (tan 60°) = 1/ (akar3)sec 30° = 1/ (cos 30°) = 1/ (akar3/2) =2/akar 3cosec 30° × tan 45° - cot 60° × sec 30°= 2 × 1 - 1/ (akar3) × 2/ (akar3)= 2 - 2/3= 4/3


17. [tex]\Large\sf{lim_{x\to\pi}\ \frac{\sec^{2}x}{\sec^{2}5x}=...}[/tex]​


lim x → π (sec² x / sec² 5x)

= (sec²(π) / sec² 5(π))

= 1 / sec² 5 × π

= 1/5atau0,2

Krksi,kluslhblhdihpus.

[tex] \displaystyle \lim_{x\to\pi}\ \frac{\sec^{2}x}{\sec^{2}5x}=[/tex]

[tex] \displaystyle\frac{\sec^{2}\pi}{\sec^{2}5\pi}=[/tex]

[tex] \displaystyle \frac{( \frac{1}{ \cos \pi} )^{2} }{ \sec ^{2} 5\pi} = [/tex]

[tex] \displaystyle \frac{( \frac{1}{ - \cos0} )^{2} }{ { \sec}^{2} \: 5\pi } = [/tex]

[tex] \displaystyle\frac{( \frac{1}{ - 1} ) ^{2} }{ { \sec}^{2} \: 5\pi} = [/tex]

[tex] \displaystyle\frac{ {( - 1)}^{2} }{ { \sec}^{2} \: 5 \pi} = [/tex]

[tex] \displaystyle\frac{1}{ { \sec}^{2} \: 5\pi } = [/tex]

[tex]\displaystyle \frac{1}{ (\frac{1}{ \cos5\pi}) ^{2} } = [/tex]

[tex] \displaystyle\frac{1}{ {( \frac{1}{ \cos\pi} )}^{2} } = [/tex]

[tex] \displaystyle\frac{1}{ {( \frac{1}{ - \cos0} })^{2} } = [/tex]

[tex] \displaystyle \frac{1}{ {( \frac{1}{ - 1}) }^{2} } = [/tex]

[tex] \displaystyle \frac{1}{ {( - 1)}^{2} } = [/tex]

[tex] \displaystyle \frac{1}{1} = [/tex]

[tex] \displaystyle1[/tex]


18. (Sec 10 sec 20 sec 40 sec 50) / (cosec 40 cosec 50 cosec 70 cosec 80)


cosec x = 1/sin x
sec x = 1/cos x
sec 10 = sec (90-10)
= cosec 80
sec 20 = ....
.....
so, sec 10 sec 20 sec 40 sec 50 = penyebutnya

hasilnya 1

19. 2-sec²Φ per sec²Φ =​



[tex] \frac{2 - \sec {}^{2} ( \alpha ) }{ \sec {}^{2} ( \alpha ) } = \frac{2 - \frac{1}{ \cos {}^{2} ( \alpha ) } }{ \frac{1}{ \cos {}^{2} ( \alpha ) } } = \frac{ \frac{2 \cos {}^{2} ( \alpha ) - 1}{ \cos {}^{2} ( \alpha ) } }{ \frac{1}{ \cos {}^{2} ( \alpha ) } } = 2 \cos {}^{2} ( \alpha ) = \cos(2 \alpha ) [/tex]

20. Bentuk lain dari sec^4x-sec^4x adalah


*(1/cos⁴x) - (1/cos⁴x)
*(1/1-sin⁴x) - (1/1-sin⁴x)

Video Terkait Topik Diatas


0 komentar:

Posting Komentar

Search This Blog

Popular Posts

Diberdayakan oleh Blogger.

About


VideoPlay is the top Blogger solution for websites with video focus.Separated they live in Bo okmarks grove right at the coast of the semantics a large language ocean which is great.

Instagram

Social Follow