Home » » Solve The System By Graphing 2x Y 5

Solve The System By Graphing 2x Y 5


Solve The System By Graphing 2x Y 5

solve the following system of equation a. 2x + 2y - 5 \pi = -5 x - y + \pi = 3 -3x + y + 2 \pi = -2

Daftar Isi

1. solve the following system of equation a. 2x + 2y - 5 \pi = -5 x - y + \pi = 3 -3x + y + 2 \pi = -2


1. to do manually, you can eliminate one variable from these three equations by making one variable from one equation equal to second or third equation.
and then you can repeat the process until a variable equal to a number.

2. you can use calculator. 

however, there is no solution to this system of equation due to the second equation.
x - y + *?*\pi = 3

*?* means need an integer value there.

2. use the cramers rule to solve the following equation system 3x-2y=6 2x+y=11​


Jawaban terlampir

Semoga membantu


3. solve simultaneously by substitution2x + 3y = 5y - 2x - 3 = 0pls bantuin cari x & y nya​


2x + 3y = 5

bisa di diubah menjadi

2x = 5 - 3y

didalam bentuk kedua

y - 2x - 3 = 0

2x dapat di ubah menjadi

y - (5 - 3y) - 3 = 0

y - (-3y) - 5 - 3 = 0

4y - 8 = 0    

4y = 8

y = 8/4

y = 2

y sudah di dapat

tinggal di pilih mau kerjakan bentuk pertama atau kedua

bentuk pertama

2x + 3y = 5

kita ingat y =2

2x + 3.2 = 5

2x + 6 = 5

2x = 5 - 6 = -1

x = -1/2

bentuk kedua

y - 2x - 3 = 0

2 - 2x - 3 = 0

2 - 3 - 2x = 0

-1 - 2x = 0

(-2x) = -1

x = -1/2

hasilnya tetap sama yaitu

x = -1/2 atau [tex]-\frac{1}{2}[/tex]

y = 2

 

 


4. Solve the inequalities 2x - 4< -10


2x - 4 < -10
2x < -6
x < -3

HP : {x | x < -3, x bilangan bulat}
HP : {...; -6; -5; -4}

5. Solve -8r = 64 (what is R) Solve the problem step by step.​


-8 . r = 64

r = 64/-8

r = -8

Sekian terimakasih!

Semoga bermanfaat!

-8r=64

r=64/-8

r=-8

pembuktian

-8(-8)=64

-8x-8=64

64=64


6. Solve each of the following pairs of simultaneous equations. a) 2x+y= 5 x + y² = 5


Since the question is in English, i'll answer in English too.

2x+y=5 ....(1)

x+y²=5 .....(2)

modified the 2 equation

x+y²=5

x=5-y² .... (3)

subtitute (3) to (1)

2(5-y²)+y=5

10-2y²+y=5

-2y²+y+5=0

2y²-y-5=0

using Quadratic Formula, we get the roots of the quadratic equation are :

-(-1)±√((-1)²-4.2.(-5))/2(2) =

1±√1+40/4 =

1±√41/4 = 1+√41/4 or 1-√41/4

thus, enter each of y value to (1) to get the value of x.

2x+1+√41/4=5

2x=5- (1+√41)/4

2x=19+√41/4

x=19+√41/8

same to the other roots, we get

2x+1-√41/4=5

2x=5-(1-√41)/4

x=19-√41/8

Hence, the solutions are

((19+√41)/8 ; (1+√41)/4) and ((19-√41/8);(1-√41)/4)

Happy to help <3


7. Solve the exact differential equation y^'=-(2xy^2+1)/(2x^2 y).


Materi : Persamaan Diferensial

Mungkin maksudmu

PD :

[tex]y'=-\frac{2x{y}^{2}+1}{2{x}^{2}y}[/tex]

Karena PD eksak, maka kamu harus mengubah y' menjadi dy/dx, lalu ke bentuk umum PD eksak.

[tex]\frac{dy}{dx}=-\frac{2x{y}^{2}+1}{2{x}^{2}y}\\(2{x}^{2}y)\,dy=(-(2x{y}^{2}+1))\,dx\\(2x{y}^{2}+1)\,dx+(2{x}^{2}y)\,dy=0[/tex]

Sekarang, periksa apakah PD memang eksak dengan cara :

[tex]\frac{\partial{M}}{\partial{y}}=\frac{\partial{N}}{\partial{x}}[/tex]

Misalkan, M = 2xy² + 1 dan N = 2x²y, maka :

[tex]\frac{\partial{M}}{\partial{y}}=4xy\\\frac{\partial{N}}{\partial{x}}=4xy[/tex]

Karena hasil turunannya sama, maka persamaan tersebut terdiferensial total (eksak), untuk menyelesaikan saya mulai saja dari N.

Jika [tex]\frac{\partial{u}}{\partial{y}}=N[/tex], maka [tex]u=\int{N\,dy}+l(x)[/tex]. Ini akan menghasilkan :

[tex]u=\int{(2{x}^{2}y)\,dy}+l(x)\\u={x}^{2}{y}^{2}+l(x)[/tex]

Untuk mencari konstanta l(x), kamu bisa menurunkan u terhadap x secara parsial, sehingga :

[tex]\frac{\partial{u}}{\partial{x}}=2x{y}^{2}+\frac{dl}{dx}[/tex]

Karena turunan u harus sama dengan M, maka :

[tex]2x{y}^{2}+\frac{dl}{dx}=2x{y}^{2}+1\\\frac{dl}{dx}=1\\\int{\frac{dl}{dx}}=\int{1}\\l(x)=x+c[/tex]

Substitusi konstanta l(x) yang telah didapat tadi ke u semula, sehingga :

[tex]u={x}^{2}{y}^{2}+x+c\\u-c={x}^{2}{y}^{2}+x\\{x}^{2}{y}^{2}+x=k[/tex]

Jadi, solusinya :

[tex]{x}^{2}{y}^{2}+x=k[/tex]

Semoga membantu, maaf kalau saya kurang mahir berbahasa inggris.

8. solve the 6 - 2x = 3x


Jawaban:

6 - 2x = 3x

-2x - 3x = -6

-5x = -6

x = 6/5

Penjelasan dengan langkah-langkah:

semoga membantu :)

Jawaban:

6/5

Penjelasan dengan langkah-langkah:

maaf kalo salah ya maaf


9. find the solution to the system of linear equations x+y=6 dan 2x-y=0


Jawaban:

x+y=6

2x-y=0

_____+

3x =6

x =6/3

x =2

x+y=6

2+y=6

y=6-2

y=4

hp {(x,y)}={(2,4)}


10. solve the following equationsa | 2x + 5 | = | x + 2 |


| 2x + 5 | = | x + 2 |
(2x+5)² = (x+2)²
4x² + 20x + 25 = x² + 4x + 4
4x² - x² + 20x - 4x + 25 - 4 = 0
3x² + 16x + 21 = 0
(3x+7)(x+3) = 0

3x+7 = 0
3x = -7
x = -7/3

x+3 = 0
x = -3

HP = {-3, -7/3}

(2x+5)^2 - (x+2)^2 =0
4x^2 + 20x + 25 -( x^2 +4x +4) =0
3x^2 + 16x + 21 = 0
(3x+7)(x+3) = 0 [difaktorkan]
x= -7 /3 atau x= -3

11. solve the simultaneous equations y-2x=-8 and x²-3x-y=2​


[tex]y - 2x = - 8 \\ y = 2x - 8 \\ \\ {x}^{2} - 3x - y = 2 \\ {x}^{2} - 3x - (2x - 8) = 2 \\ {x}^{2} - 3x - 2x + 8 = 2 \\ {x}^{2} - 5x + 8 - 2 = 0 \\ {x}^{2} - 5x + 6 = 0 \\ (x - 3)(x - 2) = 0 \\ \\ x - 3 = 0 \\ x = 3 \\ \\ x - 2 = 0 \\ x = 2[/tex]

{2, 3}


12. find the solution to each of the following system of equations by elimination for example 2x+y=5 and 3x-2y=11


3x-2y=11 |×1

2x+y=5    |×2

⇒3x-2y =11}ini

   4x+2y=10}dikurangkan ini

⇒-x=1 ⇔x=-1 dan y = 2x+y=5

                                     2×-1+y =5

                                     -2+y=5

                                           y=7



13. Solve the exact differential equation y^'=-(2xy^2+1)/(2x^2 y).


Materi : Persamaan Diferensial

Mungkin maksudmu

PD :

[tex]y'=-\frac{2x{y}^{2}+1}{2{x}^{2}y}[/tex]

Karena PD eksak, maka kamu harus mengubah y' menjadi dy/dx, lalu ke bentuk umum PD eksak.

[tex]\frac{dy}{dx}=-\frac{2x{y}^{2}+1}{2{x}^{2}y}\\(2{x}^{2}y)\,dy=(-(2x{y}^{2}+1))\,dx\\(2x{y}^{2}+1)\,dx+(2{x}^{2}y)\,dy=0[/tex]

Sekarang, periksa apakah PD memang eksak dengan cara :

[tex]\frac{\partial{M}}{\partial{y}}=\frac{\partial{N}}{\partial{x}}[/tex]

Misalkan, M = 2xy² + 1 dan N = 2x²y, maka :

[tex]\frac{\partial{M}}{\partial{y}}=4xy\\\frac{\partial{N}}{\partial{x}}=4xy[/tex]

Karena hasil turunannya sama, maka persamaan tersebut terdiferensial total (eksak), untuk menyelesaikan saya mulai saja dari N.

Jika [tex]\frac{\partial{u}}{\partial{y}}=N[/tex], maka [tex]u=\int{N\,dy}+l(x)[/tex]. Ini akan menghasilkan :

[tex]u=\int{(2{x}^{2}y)\,dy}+l(x)\\u={x}^{2}{y}^{2}+l(x)[/tex]

Untuk mencari konstanta l(x), kamu bisa menurunkan u terhadap x secara parsial, sehingga :

[tex]\frac{\partial{u}}{\partial{x}}=2x{y}^{2}+\frac{dl}{dx}[/tex]

Karena turunan u harus sama dengan M, maka :

[tex]2x{y}^{2}+\frac{dl}{dx}=2x{y}^{2}+1\\\frac{dl}{dx}=1\\\int{\frac{dl}{dx}}=\int{1}\\l(x)=x+c[/tex]

Substitusi konstanta l(x) yang telah didapat tadi ke u semula, sehingga :

[tex]u={x}^{2}{y}^{2}+x+c\\u-c={x}^{2}{y}^{2}+x\\{x}^{2}{y}^{2}+x=k[/tex]

Jadi, solusinya :

[tex]{x}^{2}{y}^{2}+x=k[/tex]

Semoga membantu, maaf kalau saya kurang mahir berbahasa inggris.

14. 1. Solve the equation |x + 2| = 62. Solve the equation |3x - 2| = 2x + 43. Solve |2x - 1| = |x + 4|tolong, Kak. ini harus sekarang​


Jawaban:

1. |x+2|=6

x+2=6

x= 6-2

x= 4

x+2=-6

x= -6-2

x= -8

maka hp nya adalah x= -8; x= 4

2. |3x-2|= 2x+4

3x-2= 2x+4

3x-2x= 4+2

x= 6

3x-2= -2x-4

3x+2x= -4+2

5x= -2

x= -2/5

maka hp nya adalah x= -2/5; x=6

3. |2x-1|= |x+4|

2x-1= x+4

2x-x= 4+1

x=5

2x-1= -x-4

2x+x= -4+1

3x= -3

x= -3/3

x= -1

maka hp nya adalah x= -1; x=5


15. Solve the following inequalities|3-2x|≤9 |2x-9|≥5


Jawaban:

maaf kak aku gk tw nih soalnya gkbs ktik simbolnye...

aku juga gatau ihh

Jawaban:

Ini Soal Matematika Bukan Sih ?


16. Solve the simultaneous equations 4x – 3y = 1 and 3x + y = 17by substitution !​


Jawaban:

x=4

y=13

caranyaadadalamfoto


17. using the graphical method, solve each of the following pairs of simultaneous equations: a. 3x-y = 0 2x-y =1


3x-y=0
2x-y=1

Elimination.                       Subtitution
(3x-y = 0 - 2x-y = 0)          2x-y = 1
=  x = -1                          = 2(-1)-y = 1
                                       = y = 1 - (- 2)
                                       y = 3
so, x = -1, y = 3

18. Solve the system of equations. 2x + 3y = -1 5x - 2y = 7 A. x = -1, y = -1 B. x = 1, y = 1 C. x = -1, y = 1 D. x = 1, y = -1


Jawaban:

D

Penjelasan dengan langkah-langkah:

semoga membantu....

Jawaban:

D. x = 1, y = -1

Penjelasan dengan langkah-langkah:

2x + 3y = -1

5x - 2y = 7

eliminate

4x + 6y = -2

15x - 6y = 21

→ 19x = 19

x = 1

→ 5x - 2y = 7

5(1) - 2y = 7

5 - 2y = 7

- 2y = 7-5

- 2y = 2

y = -1


19. Solve the following equations. a. 3(10+2x) = 7(5+3x) b. y-2/4 = y+1/7 - 3/4


Solutions for the equations are:

a. x = -1/3

b. y = -1

Explanation:

The linear equations in one variable is an equation that expressed in ax + b = 0 (a and b are two integers) and x is a variable and has only one solution. For example, 3x + 5 = 11 is a linear equation having a single variable in it. Hence, this equation has only one solution, which is x is equal to two.

The standard form of linear equations in one variable is stated as:

ax + b = 0

Where, ‘a’ and ‘b’ are real numbers, and both ‘a’ and ‘b’ are not equal to zero.

SolvingLinearEquationsinOneVariable:

Solve the following equations:

a. 3(10 + 2x) = 7(5 + 3x)

Solution:

=> 30 + 6x = 35 + 21x

=> 6x - 21x = 35 - 30

=> -15x = 5

=> x = -1/3

So, the right solution for 3(10 + 2x) = 7(5 + 3x) is x = -1/3

b. (y - 2)/4 = (y + 1)/7 - 3/4

Solution:

=> Based on the equation, we know that both sides are fractions. Therefore, multiply both sides by 28.

=> 7(y - 2) = 4(y + 1) - 7(3)

=> 7y - 14 = 4y + 4 - 21

=> 7y - 4y = -17 + 14

=> 3y = -3

=> y = -1

So, the right solution for (y - 2)/4 = (y + 1)/7 - 3/4 is y = -1

Learnmore:

=>HowtoSolveLinearEquationsinOneVariable:

https://brainly.co.id/tugas/1645575https://brainly.co.id/tugas/2219874https://brainly.co.id/tugas/1599747https://brainly.co.id/tugas/23336549

Hopefully can help you:)

DetailsforAnswer:

Subject:Mathematics

Class:7

QuestionCode:2

Category:Chapter 6 - Linear Equations and Inequations in One Variable

CodeofCategorization:7.2.6

Keywords:Linear Equations, Variable, Solution

#TingkatkanPrestasimu


20. Solve the system:x + 6y = 17x - 3y = 8SMP VIII​


x=11

y=1

Penjelasan dengan langkah-langkah:

x + 6y = 17 .......... (1)

x -  3y  = 8 ............(2)

Eliminasi kedua persamaan menghasilkan :

x + 6y = 17 .......... (1)

x -  3y  = 8 ............(2)

________________ -

9 y = 9 , y = 1

Substitusi y = 1 ke Persamaan 2 menghasilkan :

x - 3 (1) = 8

x - 3 = 8

x = 11

Maka (x,y) = (11,1)


Video Terkait Topik Diatas


0 komentar:

Posting Komentar

Search This Blog

Popular Posts

Diberdayakan oleh Blogger.

About


VideoPlay is the top Blogger solution for websites with video focus.Separated they live in Bo okmarks grove right at the coast of the semantics a large language ocean which is great.

Instagram

Social Follow