Home » » In Jkl Solve For X

In Jkl Solve For X


In Jkl Solve For X

solve for x in 2/5x = 8.

1. solve for x in 2/5x = 8.


~ Math

Penyelesaian:

= 2/5x = 8

x = ?

5 × 2/5x = 8 × 5

2x = 40

2x = 40/2

x = 20

2/5x = 8

x = 5/2 × 8

x = 5 × 4

x = 20


2. Form an equation in x use it to solve for X


(x + 10 + (x+8) + 28) / 4 = 15
2x + 46 = 15 . 4
2x = 60 - 46
2x = 14
x = 7
(x + 10 + x + 8 + 28) / 4 = 15
2x + 46 = 15 × 4
2x = 60 - 46
x = 14/2
x = 7

Kalau boleh jadikan jawaban terbaik yah.

3. Form an equation in x use it to solve for X


4 · 15 = x + 10 + x + 8 + 28
60 = 2x + 46
14 = 2x
x = 7

Sekian,semoga membantu.(x + 10 + x + 8 + 28) / 4 = 15
2x + 46 = 15 × 4
2x = 60 - 46
x = 14/2
x = 7

Kalau boleh jadikan jawaban terbaik yah.

4. 4х – 5y = 33х - 4y = 6solve for y and x​


For this question, you can use elimination method

[tex]4x - 5y = 3 \\ 3x - 4y = 6 \\ - - - - - - ( - ) \\ x - y = - 3 = = > x = y - 3[/tex]

We get 3rd equation, that is x = y - 3. Substitute x = y - 3 to the 1st equation.

[tex]4(y - 3) - 5y = 3 \\ 4y - 12 - 5y = 3 \\ - y = 15 \\ y = - 15[/tex]

Finally we get the value of y. Now the last step, substitute y to the 2nd equation to get the value of x.

[tex]3x - 4( - 15) = 6 \\ 3x + 60 = 6 \\ 3x = - 54 \\ x = - 18[/tex]

Finally we get the value of x and y, x = -18 and y = -15.

■■■■■■■■■■■■■■■■■■■■﷽■■■■■■■■■■■■■■■■■■■■

4х – 5y = 3

3х - 4y = 6

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■

[tex]\left[\begin{array}{ccc}MATH\end{array}\right][/tex]

[tex]Diketahui:[/tex]

[tex]4(y-3)-5y=3[/tex]

[tex]Ditanya:[/tex]

Substitute x = y - 3

[tex]Dijawab:[/tex]

[tex]4(y-3)-5y=3[/tex]

[tex]4y-12-5y=3[/tex]

[tex]-y=15[/tex]

[tex]\left[\begin{array}{ccc}y=-15\end{array}\right][/tex]

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

[tex]\left[\begin{array}{ccc}MATH\end{array}\right][/tex]

[tex]Diketahui:[/tex]

[tex]3x-4(-15)=6[/tex]

[tex]Ditanya:[/tex]

Substitute y = x - 6

[tex]Dijawab:[/tex]

[tex]3x-4(-15)=6[/tex]

[tex]3x+60=6[/tex]

[tex]3x=-54[/tex]

[tex]x=-18[/tex]

• • • • • • • • • • • • • • • • • • • • • • • • • • •  »Detail  Jawaban

Kelas         : 9

Mapel        : MATIMATEKA  - FISIKA

Bab           : [Kelas 9 MATIMATEKA - FISIKA Bab 2 - Substitute]  

Kode         : 9.22.2

Kata Kunci : Substitute x = y


5. Solve for x: |x-5|=2|x+1|​


(x-5 +2x+2)(x-5 - (2x+2)) = 0

(3x - 3) (-x+3) = 0

x = 1 atau x = 3


6. Solve the exponential equation for ​


Jawaban:

x= -4

Penjelasan dengan langkah-langkah:

Itu 1 saat:

(9/8)⁰

3x+12= 0

3x= -12

x= -4

[tex]( \frac{9}{8} ) {}^{3x + 12} = 1 \\ ( \frac{9}{8} ) {}^{3x + 12} = ( \frac{9}{8} ) {}^{0} \\ 3x + 12 = 0 \\ 3x = - 12 \\ x = \frac{ - 12}{3} \\ x = - 4[/tex]

[tex] \: [/tex]

»Detail Jawaban: Mapel: Matematika Kelas: X Materi: Eksponensial

#AyoBelajar!


7. Solve for x in this equation! 4 sin²x=3- No Ngasal- No Copas- Ngasal dan/atau copas=Report- Pake cara + penjelasan​


persamaan trigonometri

4 sin² x = 3

sin² x = 3/4

sin x = √(3/4)

sin x = 1/2 √3 atau sin x = -1/2 √3

Interval 0° ≤ x ≤ 360°

sin x = 1/2 √3

x = arc sin (1/2 √3)

x = 60° atau x = 180° - 60° = 120°

sin x = -1/2 √3

x = 180° + 60° = 240°

atau

x = 360° - 60° = 300°

HP = {60° , 120° , 240° , 300°}


8. Solve for x + 5 = 13.


Penjelasan dengan langkah-langkah:

x + 5 = 13

x = 13 -5

x = 8

semoga membantu

Jawab:

X + 5 = 13

X = 13 - 5 = 8

Penjelasan dengan langkah-langkah:


9. solve cosec (x-30°) = 2 for 0°<x<360°pliss bantuu​


Himpunan penyelesaian dari [tex] \rm cosec(x-30)^o = 2[/tex] adalah {60°,180°}.

Pendahuluan :

[tex]\bf\blacktriangleright Pengertian:[/tex]

Trigonometri adalah ilmu matematika yang mempelajari mengenai sudut. Contoh dari sudut yang akan dipelajari : sinus, cosinus, tangen, cosecan, secan, dan cotangen.

[tex] \\[/tex]

[tex]\bf\blacktriangleright Persamaan~Trigonometri~Umum :[/tex]

•[tex]\rm sin~x = sin~\alpha[/tex]

Kemungkinan 1 : x = α + k.360

Kemungkinan 2 : x = (180-α) + k.360

•[tex]\rm cos~x = cos~\alpha[/tex]

Kemungkinan 1 : x = α + k.360

Kemungkinan 2 : x = -α + k.360

•[tex] \rm tan~x = tan~\alpha[/tex]

Kemungkinan 1 : x = α + k.180

[tex]\\[/tex]

[tex]\bf\blacktriangleright cos(x+\alpha) \pm cos(x-\alpha) = c ~dan~sin(x+\alpha)\pm sin(x-\alpha) = c :[/tex]

•[tex] \rm sin(A+B)+sin(A-B) = 2sin~A.cos~B[/tex]

•[tex] \rm sin(A+B)-sin(A-B) = 2cos~A.sin~B[/tex]

•[tex] \rm cos(A+B)+cos(A-B) = 2cos~A.cos~B[/tex]

•[tex] \rm cos(A+B)-cos(A-B) = -2sin~A.sin~B[/tex]

[tex] \\[/tex]

[tex]\bf\blacktriangleright ax+bx = 0:[/tex]

•[tex] \rm sin~A+sin~B = 2sin\frac{1}{2}(A+B)cos\frac{1}{2}(A-B)[/tex]

•[tex] \rm sin~A-sin~B = 2cos\frac{1}{2}(A+B)sin\frac{1}{2}(A-B)[/tex]

•[tex] \rm cos~A+cos~B = 2cos\frac{1}{2}(A+B)cos\frac{1}{2}(A-B)[/tex]

•[tex] \rm cos~A-cos~B = -2sin\frac{1}{2}(A+B)sin\frac{1}{2}(A-B)[/tex]

[tex] \\[/tex]

[tex]\bf\blacktriangleright acos~x+bsin~x :[/tex]

•[tex] \rm k~cos(x-\alpha)[/tex]

•[tex] \rm k~cos(x+\alpha)[/tex]

•[tex] \rm k~sin(x+\alpha)[/tex]

•[tex] \rm k~sin(x-\alpha)[/tex]

k diperoleh dari :[tex] \rm \sqrt{a^2+b^2}[/tex]

α diperoleh dari : [tex] \rm tan~\alpha =\frac{b}{a}[/tex]

dimana : a adalah koefisien cos dan b koeofisien sin

[tex] \\[/tex]

[tex]\bf\blacktriangleright sin(A\pm B)~dan~cos(A\pm B) :[/tex]

•[tex] \rm sin(A+B) = sinA.cosB+cosA.sinB[/tex]

•[tex] \rm sin(A-B) = sinA.cosB-cosA.sinB[/tex]

•[tex] \rm cos(A+B) = cosA.cosB-sinA.sinB[/tex]

•[tex] \rm cos(A-B) = cosA.cosB+sinA.sinB[/tex]

[tex]\\[/tex]

[tex]\bf\blacktriangleright Tabel~Trigonometri:[/tex]

[tex]\rm{\boxed{ \begin{array}{c|c|c|c|c|c} \underline {{}\alpha} &\underline{\bf 0^o}&\underline{\bf 30^o}& \underline{\bf 45^o}&\underline{\bf 60^o}&\underline{\bf 90^o} \\\\ \bf sin~\alpha & 0 & \frac{1}{2} & \frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{3} & 1 \\\\ \bf cos~\alpha & 1 & \frac{1}{2}\sqrt{3} & \frac{1}{2}\sqrt{2} & \frac{1}{2} & 0 \\\\ \bf tan~\alpha & 0 & \frac{1}{3}\sqrt{3} & 1 & \sqrt{3} & \infty \end{array}}}[/tex]

•Kuadran I (0° ≤ α ≤ 90°) = semua +

•Kuadran II (90°≤ α ≤ 180°) = sin +

•Kuadran III (180° ≤ α ≤ 270°) = tan +

•Kuadran IV (270° ≤ α ≤ 360°) = cos +

•Fungsi tetap 180 ± α atau 360 ± α

•Fungsi berubah 90 ± α atau 270 ± α (sin menjadi cos, cos menjadi sin, tan menjadi cotan)

Pembahasan :

Diketahui :

[tex] \rm cosec(x-30)^o = 2[/tex] untuk 0° < x < 360°

Ditanya :

HP?

Jawab :

[tex] \rm cosec(x-30)^o = 2[/tex]

[tex] \rm \frac{1}{sin(x-30)^o} = 2[/tex]

[tex] \rm sin(x-30)^o = \frac{1}{2}[/tex]

[tex] \rm sin(x-30)^o = sin~30^o[/tex]

Kemungkinan 1 :

[tex] \rm x-30 = 30+k.360[/tex]

[tex] \rm x = 30+30 +k.360[/tex]

[tex] \rm x = 60+k.360[/tex]

[tex] \rm k = 0\rightarrow x = 60^o[/tex] (M)

[tex] \rm k = 1\rightarrow x = 420^o[/tex] (TM)

Kemungkinan 2 :

[tex] \rm x-30 = (180-30)+k.360[/tex]

[tex] \rm x-30 = 150+30 +k.360[/tex]

[tex] \rm x = 180+k.360[/tex]

[tex] \rm k = 0\rightarrow x = 180^o[/tex] (M)

[tex] \rm k = 1\rightarrow x = 540^o[/tex] (TM)

Kesimpulan :

Jadi, HP = {60°,180°}.

Pelajari Lebih Lanjut :

1) Operasi Hitung Trigonometri

https://brainly.co.id/tugas/41752888

2) Perbandingan Trigonometri

https://brainly.co.id/tugas/41744613

3) Identitas Trigonometri

https://brainly.co.id/tugas/41763457

4) Aturan Sinus

https://brainly.co.id/tugas/41784504

5) Aturan Cosinus

https://brainly.co.id/tugas/41765298

6) Persamaan Trigonometri Bentuk a cos x + b sin x

https://brainly.co.id/tugas/46598278

Detail Jawaban :Kelas : 10Mapel : MatematikaMateri : TrigonometriKode Kategorisasi : 10.2.7Kata Kunci : Cosec, Sin, Persamaan Sederhana

10. Solve the following equations for x, in interval 0<x<3603 cosx = -2​


TRIgonomeTRI
Persamaan  fungsi  cos x

cos x = cos p , maka  x = ± p +k.360

Penjelasan dengan langkah-langkah:

HP  x untuk 0< x< 360 , dari
[tex]3\ \cos x = - 2[/tex]
[tex]\cos x = -\frac{2}{3} = \cos 131,8[/tex]

x= 131,8 + k. 360   atau x = -131,8 + k.360
k= 0, 1 , 2, . . .

k= 0 , x= 131,8   atau  x = -  131,8
k = 1 , x= 491,8  atau  x = 228,2

HP  x untuk 0< x< 360 , x = { 131,8  ;  228, 2}


11. Solve exponential in the picture* 81^³log x = 27 ​


Jawaban:

[tex]x = \sqrt[4]{27} [/tex]

Penjelasan dengan langkah-langkah:

[tex] \begin{aligned} {81}^{ {}^{3}\rm log \: x} &= 27 \\ {}^{3}\rm log \: x &= {}^{81} \rm log \: 27 \\ {}^{3} \rm log \: x &= {}^{ {3}^{4} } \rm log \: {3}^{3} \\ {}^{3}\rm log \: x &= \frac{3}{4} \: {}^{3}\rm log \: 3 \\ {}^{3}\rm log \: x &= \frac{3}{4} \\ \rm x &= {3}^{ \frac{3}{4} } \\ \rm x &= \sqrt[4]{ {3}^{3} } \\ \rm x &= \sqrt[4]{27} \end{aligned}[/tex]

[tex] \: [/tex]

-TheFreeze-


12. solve for x if 1/a + x-2 = b-2


1/a + x-2 = b-2
1 + x-2    = a (b-2)
1 + x-2    = ab - 2a
  x-2        = ab - 2a - 1 
         x    = ab - 2a - 1 - 2
maka x    = ab - 2a - 3

13. 1. Solve for x when 16x = 2x + 56. 2. Solve for x when    14 = [tex] \frac{6 + 4x}{5x} [/tex] 3. Solve for x when 45 = 24 + 3x. 4. Solve for x if 5x2 + 20 = 1,000. 5. If q = 560 − 3p solve for p when q = 314.


1.
16x = 2x + 56
16x - 2x = 56
14x = 56
x = 56/14
x = 4

2.
[tex]14 = \frac{6 + 4x}{5x} \\ 14 \times 5x = 6 + 4x \\ 70x = 6 + 4x \\ 70x - 4x = 6 \\ 66x = 6 \\ \frac{6}{66} = x \\ \frac{1}{11} = x[/tex]
3.
45 = 24 + 3x
45 - 24 = 3x
21 = 3x
21/3 = x
7 = x

4.
5x² + 20 = 1000
5x² = 1000 - 20
5x² = 980
x² = 980/5
x² = 196
x = √196
x = 14

5.
q = 560-3p
314 = 560 - 3p
3p = 560 - 314
3p = 246
p = 246/3
p = 82

14. Solve for x...good luck ​


Jawab:

x = 1, x = 3, x = 2, x = -1

Penjelasan dengan langkah-langkah:

Terlampir pada gambar yaa

eksponen

x^(x² - 5x + 6) = 1

kemungkinan 1

x = 1

kemungkinan 2

x² - 5x + 6 = 0 dg syarat x ≠ 0

(x - 2)(x - 3) = 0

x = 2 atau x = 3

memenuhi

kemungkinan 3

x = -1 dg syarat (x² - 5x + 6) adalah genap

(-1)^genap = 1

uji x = -1

(-1)² - 5(-1) + 6 = 1 + 5 + 6 = 12 memenuhi syarat

x = -1

memenuhi

HP={-1,1,2,3}


15. |x-2|+|x+3|<5 solve for x plissss sekarang jugaa


Semoga paham yaa.. :))

16. solve for x 8(3^(6-3)) = 40


[tex]8(3^{6 - x}) = 40\\3^{6-x} = 5\\^3log5 = 6 - x\\1,5 = 6 - x\\x = 6 - 1,5\\x = 4,5[/tex]

17. Solve for x and find the measure of the bold angle


[tex]16x - 6 = 14x + 6 \\ 16x - 14x = 6 + 6 \\ 2x = 12 \\ x = \frac{12}{2} \\ x = 6 \\ \\ bold \: angle \\ 14x + 6 \\ 14.6 + 6 \\ 84 + 6 \\ 90[/tex]


18. Solve for x in this equation! 4 sin²x=3- No Ngasal- No Copas- Ngasal dan/atau copas=Report- Pake cara + penjelasan​


HP = {60°, 120°, 240°, 300°}

_____________________________

Penjelasan dengan langkah-langkah:

4 sin²x = 3

sin²x = 3/4

sin²x = ± √(3/4)

sin x = ½√3 ...sin x = -1/2√3

sin x = 1/2√3

sin x = sin 60°

x = 60° + k(360°)

x = 60° ...k =0

sin x = 1/2√3

sin x = sin 60°

x = (180° - 60°) + k(360°)

x = 120° + k(360°)

x = 120° ...k =0

sin x = -1/2√3

sin x = sin 240°

x = 240° + k(360°)

x = 240° ...k =0

sin x = sin 240°

x = (180° - 240°) + k(360°)

x = -60° + k(360°)

x = 300° ...k =1

HP untuk interval 0° < x < 2π,

HP = {60°, 120°, 240°, 300°}


19. Berapakah [tex]\frac{3}{2}x+5 = 6[/tex] Solve for x btw


Jawab:

2/3

Penjelasan dengan langkah-langkah:


20. solve for x 2^(3-x) = 565


Bab Logaritma
Matematika SMA Kelas X

2^(3 - x) = 565
²log 565 = 3 - x
3 - x = log 565 / log 2
3 - x = 2,752 / 0,301
x = 3 - 9,14
x = -6,14⇒log1023−x=log10 = 565
⇒(3−x)log10.2=2.7520
(3−x)(0.3010)=
2.7520

3−x=2.7520
0.3010=9.143
3.000−9.143=x
x=−6.143
.

Video Terkait Topik Diatas


0 komentar:

Posting Komentar

Search This Blog

Popular Posts

Diberdayakan oleh Blogger.

About


VideoPlay is the top Blogger solution for websites with video focus.Separated they live in Bo okmarks grove right at the coast of the semantics a large language ocean which is great.

Instagram

Social Follow